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Abstract
As the number of primary students rapidly rises, the highly repetitive task of correcting arithmetical exercises consumes

much time for teachers and hinders them from concentrating more on the growth of students. To reduce the workload of

teachers, arithmetical exercise correction (AEC) is proposed to automatically detect, recognize and correct various

arithmetical exercises in the workbook. However, two crucial issues need to be addressed since the research in this field is

still immature, i.e., accurate detection of the arithmetic exercise with various structures and the effective recognition of

long-size exercise. In this paper, we propose a three-stage method dubbed as FATE, to correct arithmetical exercises in an

end-to-end manner. Specifically, we apply the anchor-free model with a feature pyramid network and constraint of center-

ness to avoid the redundant bounding boxes. On the other hand, we employ a transformer-based framework with con-

trastive learning to extract global symbol information and generate corresponding sequences. Finally, we design a series of

rule-based templates to correct the generated sequence based on the unique features of each type of arithmetical exercises,

respectively. Extensive experiments demonstrate that our method yields the detection average precision of 96.8%, the

recognition accuracy of 92.3% and the F1 score of 91.2% in spotting experiment on the public dataset, which outperforms

the state-of-the-art method.
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1 Introduction

To develop the basic logic and mathematical skills of

primary students, arithmetical exercises contain a large

number of reasoning and calculations based on clear rules,

e.g., fractional and approximate equations. However, cor-

recting these repetitive exercises is labor-intensive and

time-consuming, which occupies much time for teachers.

Arithmetical exercise correction (AEC) [1] aims to auto-

matically spot and correct the arithmetical sequences from

the exercise image. It consists of three sub-tasks: (1)

Detecting regions containing arithmetical exercises in

images. (2) Recognizing arithmetical exercises from the

detected proposals and generating corresponding mathe-

matical character sequences. (3) Correcting the generated

exercise sequences. With the diversification of education

scenarios and content, the AEC models reduce the burdens

of teachers and help them pay more attention to the overall

development of students. Furthermore, it plays a key role in

online education.

Arithmetical exercise correction is a comprehensive task

with more challenges than traditional tasks. There are three

main difficulties in arithmetical exercise correction: (1)

Diversified structures prevent the localization in the

detection branch. For example, as shown in Fig. 1c, the

multiple short equations have similar structures with the

sub-equations of the recursive equation, which may mis-

lead the conventional models to produce redundant pro-

posals. (2) Complicated expressions bring challenges to the

recognition branch. That is, the nested relations of sub-
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equations (shown in Fig. 1a) make the model need to

consider global information. Meanwhile, the image quality

and clarity of handwritten symbols put forward require-

ments for robustness. (3) Correction branch relies on the

above two branches, which put forward high requirements

for the performance of the detection and recognition

branches. Meanwhile, the rich forms of expressions make it

difficult to pre-store and compare answers to all expres-

sions. Notably, there are two related tasks for the arith-

metical exercise correction, i.e., scene text spotting and

handwritten mathematical expression recognition. Com-

pared to them, arithmetical exercises have multi-domain

symbols, i.e., the mixture of printed and handwritten

symbols, and complex spatial structures, while the coun-

terparts have one-domain and one-line forms, respectively.

Previous handwriting mathematical expression recog-

nition (HMER) work [2–4] focuses on Latex-based

expression and achieves notable performance. However,

there are two key differences between arithmetical exer-

cises and Latex-based mathematical expression: (1)

Arithmetical exercises consist of multi-scale structures (see

in Fig. 1a) due to the wide variety of exercises, e.g., the

recursive equation and the fractional equation. In contrast,

the majority of Latex-based mathematical expressions have

only one-line structures. (2) Arithmetical exercises include

both printed and handwritten text, whereas Latex-based

ones are entirely made up of handwritten characters (see in

Fig. 1b). Moreover, the correction procedure relies on the

preceding steps since it can be implemented by rule-based

algorithms based on the generated arithmetical sequence.

To achieve the automatic correction of arithmetical

exercises, Hu et al. [1] proposed arithmetical exercise

checker, which localizes and crops arithmetical exercise

regions on the input image, then recognizes the sequence of

the arithmetical exercise by feeding the cropped images into

its recognition branch. Since this work is the first model to

address the AEC task, many problems remain to be

improved. The original detection branch, CenterNet, strug-

gles to suppress low-quality anchor boxes validly. In addi-

tion, it often fails to predict the scale of the arithmetical

exercise precisely (see Fig. 1c). The recognition branch,

arithmetical neural machine translation (ANMT), produces

low-precision results without synthetic data. It fails when

images contain lengthy arithmetical exercises since the

decoder of ANMT hardly captures dependency information

as shown in Fig. 1d. Meanwhile, this method requires a lot

of manually labeled data, which are scarce and expensive

due to the complexity of mathematical labeling.

Fig. 1 The sub-figure (a) presents representative types of arithmetical exercises, while the sub-figure (b) demonstrates Latex-based mathematical

expressions. The sub-figure (c) and sub-figure (d) depict the challenges in detection and recognition
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To address the aforementioned issues, we propose a

three-stage automatic correction method called FATE for

primary school student arithmetical exercises. It first

Focuses on the region containing the arithmetical exercise

and attaches more ATtention to generate corresponding

arithmetical sequences, then corrEct each exercise based

on rules. Specifically, the detection branch adopts a feature

pyramid network (FPN) [5] network for accurate multi-

level arithmetical exercises detection. Furthermore, the

center-ness scheme [6] is introduced to reduce redundant

proposals. For the recognition branch, considering the

appearance of crabbed text and the high similarity among

arithmetical characters, we employ the encoder to extract

the high-level difference of features of proposals. Mean-

while, we apply the contrastive learning method to enhance

the representation capabilities of the encoder in order to

tackle the intricate and various structures of mathematical

problems. Then, a transformer-based decoder is designed to

establish the global semantic dependency, which drasti-

cally exploits the long-distance correlation of arithmetical

exercises. Finally, rule-based templates are designed to

correct each type of arithmetical exercise.

In conclusion, our main contributions to the paper are as

follows:

• We propose an effective end-to-end three-stage method

to automatically correct arithmetical exercises for

primary school students.

• We employ the anchor-free detection model with FPN

[5] and center-ness [6] to locate each arithmetical

exercise in images. Then, we adopt the transformer-

based encoder–decoder framework with a contrastive

learning paradigm for exercise recognition. Moreover,

we design rule-based templates to correct arithmetical

assignments.

• Comprehensive experiments on the AEC-5k dataset

without synthetic data show that our model outperforms

state-of-the-art methods in both detection and recogni-

tion, proving its superior performance.

2 Related work

2.1 Arithmetical exercise detection

Limited by the insufficient handwritten data, researchers

first focus on the detection of printed mathematical

expressions. Ohyama et al. [7] first propose a U-Net-based

method to localize the printed mathematical expressions in

document images. Then, ScanSSD [8] introduces the vot-

ing-based pooling into general SSD [9] and achieves

promising performance. In [1], authors first propose the

new task: arithmetical exercise correction. They apply the

CenterNet [10] to localize the exercises, which shows the

effectiveness of the general object detection methods. To

accurately locate the scene text in the natural environment,

multi-oriented text detection methods [11–13] exists. For

instance, text-block fully convolutional network (FCN)

[11] takes into account both local and global cues for

localizing text lines in a coarse-to-fine procedure. On the

other hand, general object detection methods can be clas-

sified into two categories: anchor-based and anchor-free

methods. Most of the anchor-based detection methods

[14–17] need to pre-define many anchor boxes such as

Faster-RCNN [15], YOLOv3 [16] and YOLOf [18]. In

contrast, anchor-free methods [6, 10] tend to directly out-

put the detection bounding boxes. Notably, the shapes of

arithmetical exercises are diversified and similar to the

objects for general detection methods, e.g., vertical and

fractional equations. Therefore, text detection methods

struggle to address this problem. Moreover, the pre-defined

anchors from anchor-based methods limit the detection

performance for objects with large-scale differences.

However, anchor-free methods use suitable modules to

achieve high accuracy and recall of detection.

2.2 Arithmetical exercises recognition

The handwritten mathematical expression recognition,

leading to a board downstream applications, has been

extensively studied in the community. Nowadays,

sequence-to-sequence-based methods are thriving due to

their outstanding performance in establishing context

dependency. Encoder–decoder framework, one of the

sequence-to-sequence methods, is widely used in mathe-

matical expression recognition. In the existing method,

WAP [19] applies an FCN as the encoder and first intro-

duces the 2D coverage to solve the problem. The model

proposed in [4], uses two inverse decoders learning

mutually to enhance the paring ability of decoders, which

attains high accuracy. Furthermore, CAN [2] introduces a

symbol counting technique in mathematical expression

recognition, which provides global information while

decoding the expression. Nevertheless, the mathematical

expression and arithmetical exercise have certain similar-

ities but the structure of the arithmetical exercise is more

diversified, and both printed and handwritten symbols

occur alternately. ANMT, proposed in [1], is a 2D atten-

tion-based encoder–decoder framework, which uses

ResNet-50 [20] and MDLSTM [21] as the encoder for

feature extraction, while LSTM [22] is used as the decoder

to recognize arithmetical exercises. For the extended

arithmetical exercises, BTTR [3] utilizes transformer

decoder [23] to effectively capture the attention for accu-

rate recognition.
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2.3 Text spotting

Enlightened by the close relationship between detection

and recognition, some researchers commenced construct-

ing a unified model to achieve end-to-end training. It is

anticipated that the detection and recognition module share

features to learn reciprocally. Li et al. [24] first propose an

end-to-end method, but it takes a long time to process.

Xuebo Liu et al. propose an end-to-end model fast oriented

text spotting (FOTS) [25] based on bidirectional LSTM and

connectionist temporal classification (CTC), which reaches

a relatively high speed both training and inference. For

structured text, especially arithmetical exercises, AEC [1]

puts forward a two-stage method for spotting, where it

adopts CenterNet to detect the region covering arithmetical

exercises and employs ANMT to generate the sequence.

2.4 Contrastive learning

Contrastive learning is a typical method of self-supervised

learning [26], which has been broadly applied in main-

stream computer vision tasks. It mainly focuses on iden-

tifying shared features across similar instances and

differentiating among non-similar ones. MoCo [27] uses

the idea of a dictionary to do contrastive learning by

treating the outputs of two augmented pictures as query and

key. SimCLR [28] reaches another milestone with the

novel contrastive loss function, known as the normalized

temperature-scaled cross-entropy loss (NT-Xnet), and

projection head. Currently, a novel type of network, Sim-

Siam [29], is gaining popularity since it proves that the

simple Siamese network can still learn useful representa-

tions even in the absence of large batches, momentum

encoder and negative pairs. In addition, it addresses issues

with network collapse in collaboration with the stop-gra-

dient operation, significantly improving the performance.

Impressed by the creativity, we adopt the core design of

SimSiam to elevate the representation capability of our

encoder.

3 Methodology

In this section, we introduce the proposed automatic

method in three parts: (1) detection branch: localizing all

regions containing handwritten arithmetical exercises. (2)

Recognition branch: parsing the cropped images and gen-

erating the corresponding exercise sequence. (3) Correction

branch: designing templates to match the generated exer-

cises for correction. The whole architecture is presented in

Fig. 2. Specifically, the detection model first receives the

input exercise image M 2 R3�H�W and outputs three heat

maps to localize arithmetical exercises. Then, each cropped

arithmetical exercise Ii in the input image is inputted into

our recognition model, obtaining the generated sequence

fSi1; . . .; SiTg where Sij is the token of the arithmetical

exercise in Ii. Finally, we use some predefined templates to

correct the arithmetical exercise.

3.1 Detection branch

This subsection explains our detection branch in detail, and

the overall architecture is illustrated in Fig. 2. In order to

excavate feature representation in multi-level, the ResNet-

50 [20] is applied to extract feature maps fCi j i 2
f2; 3; 4gg at various scales at larger paces. Second, FPN [5]

is used to fuse feature maps in multi-level, outputting

fusion feature maps fPi j 3� i� 7g. Then, the detection

head locates arithmetical exercises in different scales.

Moreover, ‘‘center-ness’’ [6] in the detection head is

implemented to remove redundant or low-quality

proposals.

3.1.1 FPN neck

Due to the structures of arithmetical exercises being mul-

tiple in scale, the size of proposals varies largely. There-

fore, we introduce the FPN [5] mechanism to integrate

multi-level features. And the detection head can locate

multi-scale arithmetical exercises more accurately through

the richer semantic information provided by FPN. We feed

the arithmetical excise image into ResNet-50 [20] to get

multi-level feature maps defined as fCi j i 2 f2; 3; 4gg.
Then, FPN fuses feature maps at adjacent scales, increasing

the range of the receptive field. The specific process is

shown below, where Convð�Þ denotes a series of convolu-

tion operations, and fPi j 3� i� 7g denotes the outputs of

FPN. Due to the mechanism [5] of convolution neural

networks, the receptive field increases with the number of

convolution layers. That is, deep convolutional blocks tend

to perceive large arithmetical exercises in our detection

branch. Specifically, following the setting of FCOS [6], we

apply the {Pi, 3� i� 4} to detect small mathematical

exercises and 5� i� 7} to detect large ones, respectively.

Pi ¼
Conv Conv Cið Þ þ Conv Ciþ1ð Þð Þ; i ¼ 3; 4

Conv Cið Þ; i ¼ 5

Conv Pi�1ð Þ; i ¼ 6; 7

8
><

>:
ð1Þ

3.1.2 Detection head

The multi-scale detection heads are applied to locate

arithmetical exercises at multi-level. These different

detection heads share parameters, which enhances their
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representative capabilities and reduces the scale of the

detection model. Each detection head consists of four

stacked convolutional blocks. The following Eq. 2 defines

the process, where fOj
i j 3� i� 7; 0� j� 4g denotes the

outputs of each block at different scales, and GNð�Þ denotes

group normalization. The final output O4
i , where i denotes

different scales, includes the classification map, the

regression map and the center-ness map.

Oj
i ¼

Pi; j ¼ 0

ReLU GN Conv Oj�1
i

� �� �� �
; j ¼ 1; 2; 3; 4

(

ð2Þ

During the training phase, the ground truth of the i-th

arithmetical exercise in the input image is considered as

gi ¼ ~x
ðiÞ
0 ; ~y

ðiÞ
0 ; ~x

ðiÞ
1 ; ~y

ðiÞ
1 ; ~cðiÞ

� �
, where the first four dimen-

sions denote the coordinates of the top left corner and the

bottom right corner in the proposal box, and the last

dimension ~cðiÞ denotes the category of the proposal box.

We take the location ðxðiÞ; yðiÞÞ of the pixel o
ðiÞ
x;y in the

feature map O4
i as the center coordinates of the proposal

box. Then, let o
ðiÞ
x;y classifies its class c

ðiÞ
x;y, calculates its

center-ness dðiÞx;y and regresses its bias DðiÞx;y from the neigh-

boring ground truth to the location ðxðiÞ; yðiÞÞ. For those

pixels that fall into the overlapping region of multiple

target boxes, we consider the target box with the smallest

size as its label. In this paper, we define the ground truth of

the bias as ~D
ðiÞ
x;y ¼ ðD~x

ðiÞ
0 ;D~y

ðiÞ
0 ;D~x

ðiÞ
1 ;D~y

ðiÞ
1 Þ.

D~x
ðiÞ
0 ¼ x

ðiÞ
0 � ~x

ðiÞ
0 ;D~x

ðiÞ
1 ¼ x

ðiÞ
1 � ~x

ðiÞ
1

D~y
ðiÞ
0 ¼ y

ðiÞ
0 � ~y

ðiÞ
0 ;D~y

ðiÞ
1 ¼ y

ðiÞ
1 � ~y

ðiÞ
1

ð3Þ

The detection model produces many redundant proposals

without limiting the detection range of the multi-level

detection heads, which lowers the detection accuracy. So,

we add certain constraints to limit the regression range of

the multi-level detection heads. When maxð ~Dx;yÞ� ki and

maxð ~Dx;yÞ� ki�1, where ki 2 f0; 64; 128; 256; 512;1g, are

satisfied, the pixel o
ðiÞ
x;y is regarded as a positive example, or

it will be a negative example. This idea of partitioning

allows multi-scale detection heads to perform different

scale detection tasks, improving the overall detection.

3.1.3 Center-ness

Arithmetical exercises can be divided into single and co-

existed equations. Specifically, a single equation only

contains one simple equation, while a co-existed equation

usually contains many simple equations that depend on

each other. As shown in Fig. 2, the structure of the multiple

single equations is similar to the structure of one single co-

existed equation, which leads to ambiguity in detection

boundaries. This misleads the model to produce redundant

low-quality proposals. To solve this problem, the geomet-

ric centers of different equations are considered to distin-

guish the difference between these two exercises.

Concretely, we add the center constraints, dubbed as

‘‘center-ness,’’ which represents the normalized distance

Fig. 2 The automatic method, FATE, is composed of three parts, i.e., detection branch, recognition branch and correction branch
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from the location to the center of the arithmetical exercise.

The center-ness dx;y [6] is calculated on the classification

branch as illustrated in Fig. 2 and suppresses the redundant

proposals by reducing the confidence of proposals pre-

dicted by non-central pixels. During the training phase, its

label ~dx;y can be denoted by the following Eq. 4.

~dx;y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min D ~x0;D ~x1ð Þ
max D ~x0;D ~x1ð Þ �

min D ~y0:D ~y1ð Þ
max D ~y0;D ~y1ð Þ

s

ð4Þ

Finally, we optimize the loss function L ox;y;Dx;y

� �
defined

in Eq. 5, where Lcls denotes the focal loss [30], Lreg

denotes the IOU loss in UniBox [28] and Lbce denotes the

cross-entropy of the binary classification. 1 ~cx;y [ 0f g denotes

the indicator function, being 1 if ~cx;y [ 0 and 0 otherwise.

L ox;y;Dx;y

� �
¼ 1

Npos

X

x;y

Lcls cx;y; ~cx;y
� �

þ Lbceðdx;y; ~dx;yÞ

þ k
Npos

X

x;y

1 ~cx;y [ 0f gLreg Dx;y; ~Dx;y

� �

ð5Þ

In the testing process, the confidence of each proposal is

calculated by multiplying the center-ness score and the

classification score. Those proposals with confidence

higher than the predefined confidence threshold are

reserved. As illustrated in Fig. 2, we suppress those pro-

posals with low confidence scores whose center pixel is

colored orange.

3.2 Recognition branch

In the recognition branch, the encoder–decoder framework

is adopted as the overall architecture to accomplish the

image-to-text task. First, given an image containing one

arithmetical exercise cropped from the detection branch,

the encoder extracts high-level semantic information from

it to generate the feature map F. Then, the image positional

encoding matrix PEI
x;y;d is added to it for enhancing the

time-series attribute in (x,y) dimension. Finally, the feature

map with positional information is fed into the decoder for

obtaining the arithmetical exercise S1; . . .; STf g.
We apply the DenseNet [31] to derive the feature map F

of the input cropped arithmetical exercises due to its strong

ability of image feature extraction. Simultaneously, the

self-supervised contrastive learning method is introduced

to prompt the representation capability of the encoder for

better performance. The transformer-based decoder mod-

ule, which combines a bidirectional training strategy for

capturing the global semantic dependencies, is mainly

discussed in Sect. 3.2.2. The entire view of the model is

illustrated in Fig. 3a.

3.2.1 Encoder

We employ the densely connected convolutional network

(DenseNet) [31] as the encoder to extract the feature of the

cropped arithmetical image. With a series of dense blocks

and dense connections between feature maps, the encoder

maintains the completeness of complex spatial structural

features of arithmetical exercises. Assume that Fl is the

feature map output of the ðl� 1Þth dense block, then Flþ1
can be computed by:

Flþ1 ¼ Tl Dl F0;F1; . . .;Fl½ �ð Þð Þ ð6Þ

where Dlð�Þ denotes the dense block operation which is the

composite of three layers, i.e., 3 � 3 convolutional layer,

BN and activation layer. Tlð�Þ denotes the transition block

between two dense blocks, which consists of a 1 � 1

convolutional layer and a 2 � 2 average pooling layer.

In a nutshell, DenseNet inputs the cropped exercise

image Ii 2 R3�H0�W 0 by the detector and outputs the feature

map with C channels. Considering that handwritten arith-

metical exercises are mostly in a slender format, although

the shapes of images in the dataset are various, resizing all

images to 64 � 256 is feasible based on the experiment.

After obtaining the feature map, image positional

encoding can enrich time-series information for the deco-

der. The operation is similar to word positional encoding

[23] with the difference that the input of image positional

encoding is two-dimensional. Particularly, sinusoidal

positional encoding vector PEW
�x;d and PEW

�y;d are computed in

the x and y dimensions, respectively. They are then con-

catenated for the image positional encoding matrix. Given

a 2D position tuple (x; y) and the dimension d as the word

positional encoding, the image encoding vector PEI
x;y;d can

be represented as follows:

�x ¼ x

H
; �y ¼ y

W

PEI
x;y;d ¼ PEW

�x;d=2;PE
W
�y;d=2

h i ð7Þ

3.2.2 Decoder

We adopt the standard transformer [23] with essential parts

as the decoder. First, the flattened feature map with posi-

tional information from the encoder is input to the decoder

as the key and query, which are employed to compute the

multi-head scaled attention with the value matrix, i.e., the

symbol label of the arithmetical exercise during training, or
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output sequence of the decoder in preceding steps during

testing. This operation excavates the similarity between the

symbol sequence and the global image information,

enhancing the perception for multi-scale arithmetical

exercises. Specifically, assuming that K, Q and V denote

key, query and value matrix, respectively, the multi-head

attention can be illustrated as follows:

MultiHead Q;K;VÞð ¼ Concat head1; . . .ð headhÞH

headi ¼ Attention QHQ
i ;KH

K
i ;VH

V
i

� � ð8Þ

where Attentionð�Þ stands for the scaled dot product

attention operation. HQ
i 2 Rd�dk , Hk

i 2 Rd�dk , Hk
i 2 Rd�dk ,

H 2 Rd�d,dk ¼ dmodðheadÞ and by default, the number of

heads is set to 8. The attention score matrix which mea-

sures the correspondence between the feature map and the

label is reformatted into the feed-forward Layer and linear

layer with softmax function to generate the arithmetical

sequence.

Referring to the general approach [23], we adopt the

auto-regressive method in both training and inference.

Notably, the bi-directional decoding strategy [3] is added to

improve the recognition accuracy in the training phase. For

the target arithmetical exercise sequence

Starget ¼ s1; . . .; sTf g, the corresponding directional

sequences can be represented as follows:

S
!¼ hSOSi; s1; . . .; sT; hEOSif g

S
 ¼ hEOSi; sT; . . .; s1; hSOSif g

ð9Þ

where T is the length of the sequence, and hSOSi and

hEOSi are special tokens. Assuming that S
!�

is the

sequence generated from left to right, and S
 �

is generated

from right to left, the generation process is given by:

S
!� ¼ argmax

s

XT�1

i¼0

log p siþ1 j s� i; v; rð Þ ð10Þ

where s� i ¼ s1; . . .; sif g, v is the feature vector generated

by the encoder from feature map F, and r is the parameter

set of the transformer decoder. The generation process of

S
 �

is similar. Cross-entropy function is chosen to compute

the loss in both directions, which can be expressed as

follows:

LceðhÞ ¼ �
XT

i¼1

log p s~iþ1 j s~� i; rð Þ: ð11Þ

3.2.3 Contrastive learning paradigm

Arithmetical exercises can be divided into a number of

categories, and those within the same category share

Fig. 3 Illustration of the overall architecture of the recognition branch. The sub-figure (a) describes components of the recognition branch, and

sub-figure (b) elaborately demonstrates the design of the contrastive learning module
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similar features. In order to extract the distinctive feature of

each type of arithmetical exercises, which can further

strengthen its representational capability, a contrastive

learning paradigm is employed in the training phase. As

illustrated in Fig. 3b, the additional projector and predictor

are adopted based on the Simsiam [29] manner. Specifi-

cally, the encoder simultaneously takes two randomly

augmented views I1 and I2 from the cropped exercises

image I as input and outputs corresponding feature maps

F1 and F2, respectively. Notably, the random augmentation

operation contains Gaussian blur, color jitter and added

Gaussian noise. Then, the projector module takes the two

flattened F1 and F2 as input and outputs intermediate

features p1 and p2. Finally, the predictor contains two MLP

blocks to generate the output symbol. It maps p1 and p2 to

final contrastive features h1 and h2. To learn the relation-

ship between semantic information and representation

space, the cosine similarity function is applied to measure

the similarity, given by:

D p1; h2ð Þ ¼ � p1

p1k k2

� h2

h2k k2

: ð12Þ

In light of the BYOL [32], the symmetric loss is defined as

follows:

Lcon ¼
1

2
D p1; h2ð Þ þ 1

2
D p2; h1ð Þ: ð13Þ

Significantly, for the purpose of preventing collapsing of

the encoder, the gradient of h2 is stopped to propagate back

to the encoder, which serves as the constant. Conversely,

the encoder receives the gradient from p2. The process can

be illustrated as follows:

Lcon ¼
1

2
D p1; stopgradðh2Þð Þ þ 1

2
D p2; stopgradðh1Þð Þ

ð14Þ

where Lcon 2 ½�1; 1�. Noteworthy, the simple combination

between Lce and Lcon causes unexpected gradient values

when conducting backpropagation. As a consequence, the

value of the contrastive loss function is necessary to remain

constantly positive. Furthermore, for balancing weights of

two different losses, the coefficient a ¼ 0:5 scales the

range of contrastive loss between 0 and 1. The loss is

adjusted as:

Lmod ¼ a �maxð0; 1� LconÞ: ð15Þ

Therefore, the total loss of the recognition branch is as

follows:

Lrec ¼ Lce þ b � Lmod; ð16Þ

where b is set to 1 by default.

3.3 Correction branch

In order to achieve automatic correction, the union of nine

templates with corresponding matching rules and correc-

tion criteria is predefined as the ‘‘prefabricated template

library.’’ As shown in Fig. 4, the entire procedure of the

correction branch can be summarized as three steps. First,

the pre-processing module processes the arithmetical

sequence that is produced by the recognition branch.

Specifically, two key procedures are included: (1) extract

¼, \ and [ wrapped in parentheses and (2) transform all

kinds of parentheses into round parentheses. Notably, the

pre-correction module would directly judge the exercise as

wrong if the incomplete arithmetical sequence where the

answer is missing or the parentheses are not in closure.

Second, the arithmetical sequence is classified as an

exclusive template from the library of prefabricated tem-

plates. For instance, the recognized arithmetical sequence

from the recognition branch,

‘‘84=2þ 3# ¼ 42þ 3# ¼ 45,’’ is adjusted in format and

prior corrected through pre-process pre-correction. Then, it

is identified as the recursive equation by the unique token

‘‘#=.’’ Finally, corresponding to the recursive expression

template, the generated sequence is examined with the

consistency and accuracy of intermediate expressions. The

judgment is correct only if all intermediate expressions are

equal to the final result. Figure 5 shows different correction

results based on the branch to demonstrate the superior

performance of our model.

4 Experiments

4.1 Dataset and evaluation

Dataset: We use the handwritten arithmetical exercise

dataset AEC-5k [1] to evaluate our proposed method,

which contains various forms of arithmetical exercises. In

detail, this dataset consists of 5000 mathematical home-

work images of elementary school students and 77,097

arithmetical exercises. We split AEC-5k into the training

set and the test set with a ratio of 9:1, which are dubbed

AEC-4.5k and AEC-500, respectively. Since there are

various structures and forms of arithmetical exercise, we

classify them from two perspectives (shown in Fig. 6), i.e.,

equation type and equation format. Specifically, an equa-

tion is deemed ‘‘simple‘‘ if it conforms to the following

criteria: (1) It is presented in a single line; and (2) it lacks

any units, fractions or remainders. In contrast, the ‘‘recur-

sive equation’’ based on its multi-line format and multiple

instances of the ‘‘=’’ sign is co-existed equations. While the
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equation type is intended for the subsequent correction

branch. Meanwhile, the classification method based on the

format tries to describe the structure of exercises, e.g., unit

equations, fraction equations and vertical equations.

Evaluation: For the detection branch, we select the evalu-

ation criterion following FCOS [6]. First, we calculate the

average precision and average recall to evaluate the

effectiveness of the detection branch. Second, we investi-

gate the AP and AR for exercises of different scales. ‘‘L’’,

‘‘M’’ and ‘‘S’’ denote the exercise for the three sizes: large,

medium and small. Then, we choose APL, APM, APS,

ARL, ARM and ARS to denote the average precision and

average recall of the exercises of different scales.

Fig. 4 Illustration of the entire process of correction branch. Note that

the text in red denotes the recognized arithmetical sequence that

represents the arithmetical exercise in the image. The content in the

red box is the intermediate component of the equation in sub-

figure (a). The sub-figure (b) clearly demonstrates the entire

correction process

Fig. 5 Comparison of different correction results of arithmetical exercises
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To evaluate the effectiveness of the recognition branch

convincingly, we directly crop images according to the

ground truth and regard them as the input of the recognition

model. We select three quantitative metrics of accuracy,

i.e., Exprate, � 1 and � 2, which indicate the exercise

recognition rate when zero to two structural or symbol

errors can be tolerated. Meanwhile, we conduct the spot-

ting experiment to verify the overall performance of the

model. In detail, we first locate the arithmetical exercise by

the detection model and crop it based on the location.

Then, we feed these cropped images into the recognition

model to obtain the final spotting results. We utilize the

precision (P), recall (R) and F1 to measure the spotting

performance of different combinations of prevalent detec-

tion and recognition models, given by:

P ¼ Nrec�right

Ntrue

;R ¼ Nrec�right

Ndet

; F1 ¼
2� P� R

Pþ R
; ð17Þ

where Nrec�right denotes the number of correctly recognized

arithmetical exercises, Ntrue denotes the true number of

arithmetical exercises and Ndet denotes the number of

detected arithmetical exercises.

4.2 Experiment implementation

Training details: To avoid the accumulation of errors, we

train the detection branch and the recognition branch,

respectively. For detection, we finetune our detection

branch with a TITAN RTX GPU based on the AEC-4.5K

dataset and the pre-trained model [6], which is trained on

the large-scale detection benchmark COCO. The SGD [33]

optimization scheme with an initial learning rate of 0.005

and momentum of 0.9 is used to optimize the network. A

common learning rate adjustment strategy is employed to

realize the learning rate decay, that is, the learning rate is

decayed by a factor of 0.1 when 60,000 iterations and

80,000 iterations. For recognition, we train the recognition

branch with 4 � RTX 3090 GPUs based on about 70

thousand arithmetical exercises from the AEC-4.5k. The

AdaDelta [34] optimization scheme with an initial learning

rate of 1.0 and weight decay of 1e-4 is used to optimize

the network. For data augmentation, Gaussian blur, random

Gaussian noise and color jittering are adopted for recog-

nition accuracy improvements.

Inference details: We evaluate our model on AEC-500. The

product of the center-ness score and the class score serves

as the confidence of proposals. We set the non-max sup-

pression threshold to 0.7 to suppress those low-quality

proposals. After obtaining cropped images from the

detection branch, we feed them into the recognition branch.

Specifically, we use beam search with ten beams when

inference.

4.3 FATE: ablation study

In this section, we conduct thorough ablation studies to

verify the effectiveness of the detection and recognition

branches, respectively. All studies in this section are con-

ducted with AEC-5k.

4.3.1 Detection branch

Multi-level prediction with FPN: In this study, we evaluate

the benefit of FPN. Of note, we investigate the exercise

dataset and find that most of the exercises are small in size.

At the same time, the variance of the exercise size distri-

bution is large. Therefore, we compare the effectiveness of

Fig. 6 Illustration of different

classifications of equations. The

type level is based on equation

type for the purpose of

corrections. The format level is

based on the equation format for

detection
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multi-level detection between the model with FPN and

without FPN. In Table 1, it can be noticed that AP is

improved by 0.6% with the addition of FPN network

branches. In particular, AR and ARS are improved by 1.2%

and 0.5%, respectively.

We also add cost-free improvements in our detection

branch as shown in Table 1. These tricks successfully

boost our detection branch from 96.0 to 96.8% in AP. In

addition, the center sampling strategy makes our detection

branch accurately locate small exercises and improves APS
and ARS by 0.9% and 0.4%.

Center-ness: The following study verifies the effectiveness

of center-ness. The method of the third line in Table 2

(‘‘center-ness on reg’’) is the full version of our method

with all improvements in Table 1. In addition, the methods

corresponding to the other two lines are the variants of the

method corresponding to the third line. Typically, the

ground truth of the boundary of exercise is ambiguous,

which results in the occurrence of redundant bounding

boxes. To justify whether the center-ness scheme addresses

the above problem, we perform the comparison experiment

of center-ness based on multi-scale arithmetical exercises.

Table 2 reveals our detection model with center-ness

branch boosts APS from 93.9 to 98.1% and ARS from 95.4

to 97.0%.

4.3.2 Recognition branch

In this study, we conduct experiments to verify the effec-

tiveness of per component. For efficiency, the recognition

model we use is the FATE recognition branch with four

dense blocks.

Image positional encoding: In this study, we evaluate

the benefit of image positional encoding. Statistically,

arithmetical exercises mostly appear orderly in an image.

To capture this property, image positional encoding is

thought to be a reasonable way. Therefore, Table 3

demonstrates that image positional encoding makes a dif-

ference in the final result. It verifies our assumptions that

the image positional encoding technique enriches the time-

series information of the feature map. Therefore, the

Exprate metric is increased by 5.9%.

Contrastive learning paradigm: In the proposed recog-

nition branch shown in Fig. 3, we adopt the contrastive

learning paradigms. Specifically, the data augmentations

included with added Gaussian noise, Gaussian blurring and

color dithering are used in our implementation. It not only

creates two different views of the same image but also

amplifies the diversity of data. The results are reported in

Table 3, and we discover that the model gains further

improvement in Exprate on top of the already high

recognition accuracy rate. This, in turn, demonstrates the

effectiveness of the end-to-end contrastive learning

method, which promote the generalization ability of the

encoder to extract more high-level hidden semantic infor-

mation from an exercise image.

4.4 FATE: comparison with state-of-the-art

We compare our FATE with several widely-used detection

and recognition models, respectively. Furthermore, we

conduct end-to-end spotting experiments to demonstrate

the capability of FATE for arithmetical exercise correction.

All the compared methods and variants follow the same

training strategy as our model. Notably, we replace the

ResNet-50 [20] with ResNet-18 [20] as the encoder of

Table 1 Comparison of the

impact of FPN neck and some

cost-free improvements on our

network

Method w/o FPNa AP APb
S APb

M APb
L

AR ARS ARM ARL

FATE detection 7
c 95.4 93.7 95.3 95.5 97.5 96.1 97.5 97.4

FATE detection 4
c 96.0 94.9 96.0 96.1 97.8 96.6 97.9 97.7

Improvements

? GN. in headd
4 96.5 95.5 96.6 96.5 98.2 97.0 98.4 98.1

? ctr. on rege
4 96.7 94.2 96.8 96.9 98.4 96.6 98.5 98.3

? ctr. samplingf
4 96.8 95.1 96.8 96.9 98.4 97.0 98.5 98.4

a‘‘w/o FPN’’ indicates whether to add FPN network branches to the original network
b‘‘L,’’ ‘‘M’’ and ‘‘S’’: the exercise for the three sizes of large, medium and small, respectively
c‘‘4’’ indicates that the model is implemented with the corresponding technique, while ‘‘7’’ is on the

contrary
d‘‘GN. in head’’: group normalization in the head
e‘‘ctr. on reg’’: computes center-ness by with the regression branch and by default in the classification

branch center-ness
f‘‘ctr. sampling’’: perform center-ness sampling
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ANMT in AEC [1], since the ANMT with ResNet-50

cannot maintain stable training process in AEC-4.5k.

4.4.1 Detection branch

As Table 4 shows, our detection model outperforms these

mainstream detection models and the tailored detection

method ScanSSD [8] significantly. The reasonable struc-

ture and anchor-free detection method make our model

locate exercises more accurately than others. In addition,

our detection is simple yet performs excellent performance

in detecting small exercises. Specifically, our best model

achieves 96.8% in AP and 98.4% in AR.

4.4.2 Recognition branch

To demonstrate the superiority and adaptability of our

method in arithmetical exercises recognition, we compare

ours with the HMER model CAN [2] and ABM [4] trained

on AEC-4.5k and the recognition branch of AEC [1]. To

ensure the fairness of performance comparison, we use the

same data augmentation operations. As shown in Table 5,

our model outperforms the state-of-the-art arithmetical

exercise correction method, i.e., AEC, of 26.5% in Exprate.

Compared with the state-of-the-art HMER methods, our

approach delivers significant improvements in all metrics.

To verify the validity of the FATE recognition branch,

we further implement comparison experiments between

different variants of our model. Table 5 convinces us that

the encoder plays an important role in recognition accu-

racy. The recognition performance of the FATE increases

significantly with the number of dense blocks. Therefore,

Table 2 Comparison of the

impact of center-ness branches

on the network, respectively

Method AP APS APM APL AR ARS ARM ARL

Nonea 96.3 93.9 96.1 96.5 98.0 95.4 98.0 98.1

Center-ness on cls.b 96.5 94.4 96.5 96.5 98.2 96.3 98.4 98.2

Center-ness on regc 96.8 95.1 96.8 96.9 98.4 97.0 98.5 98.4

a‘‘None’’: the center-ness branch is not used
b‘‘center-ness on cls.’’: center-ness is computed on the classification branch
c‘‘center-ness on reg.’’: center-ness is computed on the regression branch

Table 3 Comparison of the impact of ‘‘IPE’’ and ‘‘CL’’ on the net-

work, respectively

Model IPEa CLb ExpRate � 1 � 2

FATE 7 7 85.5 92.8 95.6

4 7 91.4 95.7 97.4

4 4 91.7 95.9 97.6

a‘‘IPE’’: image positional encoding
b‘‘CL’’: contrastive learning

Table 4 Comparison experiment of the detection branch

Method BackBone AP APS APM APL AR ARS ARM ARL

Two-stage methods

Faster-RCNN [15] w/ FPN [5]a ResNet-50 74.6 65.7 73.4 75.5 80.1 71.4 79.1 81.2

One-stage methods

ScanSSD [8] Vgg-16 66.7 57.1 64.8 68.4 74.1 65.2 73.0 75.3

YOLOv3 [16] Darknet-53 68.5 59.8 67.0 69.8 75.2 67.1 73.5 76.7

YOLOf [18] ResNet-50 76.1 68.2 75.1 76.9 81.1 73.2 80.4 81.8

RetiNaNet [30] ResNet-50 75.1 70.3 74.3 75.9 81.0 75.0 80.4 81.6

DETR [17] ResNet-50 73.6 48.9 72.1 75.2 79.9 64.5 78.3 81.4

CenterNet [10] Hourglass-52 68.2 57.9 73.6 63.7 75.6 68.0 80.1 71.8

FATE detection ResNet-50 96.0 94.9 96.0 96.1 97.8 96.6 97.9 97.7

FATE detectionby ResNet-50 96.8 95.1 96.8 96.9 98.4 97.0 98.5 98.4

a Faster-RCNN w/ FPN: faster-RCNN network [15] with FPN network [5]

b FATE Detectiony: FATE detection branch with improvements
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we adopt the DenseNet-B5, which performs superior per-

formance in three metrics, as the encoder of the recognition

branch of our final FATE model.

4.4.3 Spotting

To evaluate the effectiveness of our end-to-end method, we

carry out the spotting experiment to compare different

combinations of detection and recognition models. That is,

we use the proposals generated by different detection

models as the input to the recognition models. We compare

our FATE with the AEC [1] and some well-known variants

of detection and recognition branch, e.g., YOLOf [18],

CAN [2] and ABM [4]. The performance of different

approaches is shown in Table 6. In light of the results, the

AEC performs poorly on AEC-500 (see in the first row),

while the FATE achieves the best performance in the

spotting experiments. Notably, our recognition branch

improves the spotting performance even if the detection

branch is changed to another model, showing the gener-

alization of our design. Furthermore, we conduct qualita-

tive studies by comparing the visualization of detection and

recognition results between different variants. The results

shown in Fig. 7 reveal that (1) our FATE can tackle the

complicated boundaries agilely and prevent producing

redundant bounding boxes; (2) the compared methods

struggle with the problems of overlap and similar symbols,

while our method generates sequences consistent with the

content of the image and (3) although manually introducing

Gaussian noise to the original image or encountering the

situation where the exercises are tilted, our model can

tackle them in an effective way. The stunning results again

demonstrate the superior performance of our proposed

method.

4.4.4 Failure cases

Arithmetical exercise correction is an intricate task due to

its uncertainty and complexity. To further analyze the

challenge of this task, typical error cases are presented in

Fig. 8, which highlights three primary causes associated

with incorrect results. (1) Low image quality, e.g., heavy

background noise, low image resolution and lightness

deviation. These factors interfere with the model to learn

key feature information. (2) Equations with complex

structures pose a challenge for the model to localize and

identify the boundaries and structures of equations. (3)

Similar symbols, which confuse the models and lead to

redundant detection and wrong recognition results. We

believe that these analyses can provide inspiration for

future direction.

Table 5 Comparison

experiment of the recognition

branch

Method Encoder Decoder Exprate � 1 � 2

ANMT [1] ResNet-18 ? MDLSTM LSTM 65.8 81.3 82.8

ABM [4] DenseNet MutalGRU 91.5 95.9 97.5

CAN [2] DenseNet Countingdecoder ? GRU 82.8 91.1 94.1

FATE DenseNet-B3a Transformer 88.5 93.7 95.8

DenseNet-B4 Transformer 91.7 95.9 97.6

DenseNet-B5 Transformer 92.3 96.3 97.7

a‘‘B3’’: three dense blocks

Table 6 Comparison experiment of spotting

Method Spotting

Detection Recognition P R F1

AEC detection [1] ANMT [1] 63.6 57.0 60.1

YOLOf [18] ABM [4] 55.6 88.5 68.3

YOLOf [18] CAN [2] 49.3 81.4 61.4

YOLOf [18] FATE recognition 56.6 89.3 69.3

FATE detection ABM [4] 90.8 82.4 86.4

FATE detection CAN [2] 82.2 90.1 86.0

FATE detection FATE recognition 91.7 90.8 91.2
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Fig. 7 Visualization of the results of different combinations of

detection and recognition models. The sub-figure (a) is the input

image and the ground truth cropped images with arithmetical

exercises. The sub-figure (e) shows the robustness of FATE. Note

that the red denotes errors while the green indicates correctness

Fig. 8 The failure cases of the detection (first row) and recognition

branches (other rows), where (a), (b) and (c) correspond to the three

factors of low image quality, i.e., complex structure and distorted text,

respectively. The red rectangle in detection cases denotes the wrong

localization bounding box, while the red symbols in recognition cases

denote the wrong counterparts
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5 Conclusion

In this paper, we present a novel end-to-end three-stage

method, FATE, which can auto-correct arithmetical exer-

cises for elementary school students. We apply the anchor-

free detection model, encoder–decoder framework and

algorithm templates to locate, recognize and correct exer-

cises. Furthermore, comprehensive experiments and abla-

tion studies on AEC-5k demonstrate that our model

outperforms other models and shows promising results.
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