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Abstract

How to learn a transferable feature representation
from limited examples is a key challenge for few-
shot classification. Self-supervision as an auxiliary
task to the main supervised few-shot task is con-
sidered to be a conceivable way to solve the prob-
lem since self-supervision can provide additional
structural information easily ignored by the main
task. However, learning a good representation by
traditional self-supervised methods is usually de-
pendent on large training samples. In few-shot sce-
narios, due to the lack of sufficient samples, these
self-supervised methods might learn a biased rep-
resentation, which more likely leads to the wrong
guidance for the main tasks and finally causes the
performance degradation. In this paper, we pro-
pose conditional self-supervised learning (CSS) to
use prior knowledge to guide the representation
learning of self-supervised tasks. Specifically, CSS
leverages inherent supervised information in la-
beled data to shape and improve the learning fea-
ture manifold of self-supervision without auxil-
iary unlabeled data, so as to reduce representation
bias and mine more effective semantic information.
Moreover, CSS exploits more meaningful informa-
tion through supervised learning and the improved
self-supervised learning respectively and integrates
the information into a unified distribution, which
can further enrich and broaden the original repre-
sentation. Extensive experiments demonstrate that
our proposed method without any fine-tuning can
achieve a significant accuracy improvement on the
few-shot classification scenarios compared to the
state-of-the-art few-shot learning methods.

1 Introduction
Different from previous deep learning based methods that re-
quire a large number of manually labeled training data, few-
shot learning methods can mimic human to recognize new
classes with very few examples. The recent work of visual
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few-shot learning can learn a transferable feature representa-
tion from training a collection of tasks on base classes and
generalize the representation to novel (unseen) classes with
very few examples [Chen et al., 2019b]. However, due to the
data scarcity, the obtained supervised information mainly fo-
cuses on the differences of the base class samples and ignores
the semantic information within samples valuable for novel
classes. Therefore, more semantic information for good rep-
resentation from limited samples should be extracted for few-
shot classification problems.

Self-supervised learning has emerged as an important
training paradigm for exploring a strong visual representa-
tion, without relying on pre-defined annotations [He et al.,
2020; Chen et al., 2020]. Usually, the self-supervised repre-
sentation is learned from a pretext task by constructing cor-
related views with augmentation operations (e.g., rotation or
exemplar) on original data and making a distinction between
augmented views and the original one. Another method of
self-supervision adopts contrastive loss, which brings repre-
sentations of different views of the same data closer (“positive
pairs”), and spreads representations of views from different
data (“negative pairs”) apart [He et al., 2020].

Recently, self-supervised learning considered to offer addi-
tional semantic information is applied to the few-shot classifi-
cation [Gidaris et al., 2019; Su et al., 2020; Lee et al., 2020].
These self-supervision based few-shot learning methods use
self-supervised tasks as auxiliary tasks and original few-shot
classification tasks as main tasks to jointly learn a same repre-
sentation. However, self-supervision is usually dependent on
the availability of large training samples and unsuitable for
few-shot scenarios. The direct application of previous self-
supervision learning tasks for few-shot scenarios might eas-
ily fall into the learning of undesirable shortcuts [Noroozi and
Favaro, 2016a], e.g., color histograms and edge continuity in-
stead of key semantic information. Therefore, the learning
of self-supervision might be biased, which might lead to the
wrong guidance for the main classification tasks and finally
cause the performance degradation.

In this paper, we propose conditional self-supervised learn-
ing (CSS) that can be more resilient to few-shot classifi-
cation. CSS treats supervised few-shot and self-supervised
tasks equally and learns two feature representations by these
two paradigms respectively. For self-supervised part, CSS
leverages supervised information as a teacher to guide the
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(a) Pre-training stage (b) Self-supervised training stage

(c) Meta-training stage

Figure 1: Architecture of conditional self-supervised learning for few-shot classification.

learning of self-supervision. Finally, all the information is
integrated into a unified distribution which can further en-
rich and broaden the original representation. Therefore, the
knowledge learned by CSS can infer other things from one
fact and further improve the generalization performance. It
is worth noting that our approach is fundamentally different
from semi-supervised learning methods, and does not require
any auxiliary unlabeled data.

The contributions of our work are:
• We explore a new pattern of self-supervision for few-

shot learning. CSS learns two different representations
by supervised and self-supervised learning respectively
instead of the previous shared representation pattern,
and fuses these representations into a new and aug-
mented one to further enrich and broaden the semantic
representation capacity for few-shot learning.
• We design a novel conditional module applied to self-

supervised learning. The module can shape the learning
feature manifold of self-supervision and reduce repre-
sentation bias. To the best of our knowledge, it is the
first time to leverage supervised information to guide the
training of self-supervision in few-shot learning.
• We propose CSS with a 3-stage training pipeline: super-

vised pre-training stage, self-supervised training stage
and meta-training stage. In the last stage, we design a
novel knowledge distillation (FD) to reinforce the fusion
of representations learning from the first two stages.
• We perform adequate experiments to demonstrate that

our approach is totally superior to original and self-
supervision-based few-shot classification methods. Sys-
tematic studies by varying the combinations of different
stages are conducted, which verifies the effectiveness of

the proposed three-stage training method.

2 Related Work
Few-shot classification. Few-shot classification aims to ac-
quire transferable visual representation by learning to rec-
ognize unseen novel classes from few samples with abun-
dant training on base classes [Chen et al., 2019b]. Many
efforts have been devoted to overcoming the data efficiency
issue and can be mainly divided into two categories: the
gradient-based model and metric-based model. The gradient-
based model [Andrychowicz et al., 2016; Finn et al., 2017;
Rusu et al., 2019] can rapidly adapt a model to a given task
via a small number of gradient update steps. MAML [Finn
et al., 2017] is a representative as the gradient-based model.
This method advocates learning a suitable initialization of
model parameters by learning from base classes, and trans-
fers these parameters to novel classes in a few gradient steps.
Metric-based model that leverages similarity information be-
tween samples to identify novel classes with few samples
[Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017;
Sung et al., 2018]. Prototypical Network [Snell et al., 2017]
is a representative of metric-based model. It takes the mean
of support samples i.e., training samples of a class as its class
prototype and classifies a query, i.e., test sample according to
the distance to each class prototype. In our work, we mainly
consider the classification model combined with Prototypical
Networks and cosine classifiers.

Self-supervised learning. Without the expensive manual
annotations, self-supervision learns a feature representation
by constructing pseudo-labels for annotation-free pretext
tasks with only input signals and learning to predict them.
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The recent advances of self-supervised learning usually con-
sist of two components: image generation and contrastive
learning. The former dedicates to design the pretext tasks
to exploit compact semantic visual representation such as rel-
ative rotation prediction [Chen et al., 2019a], jigsaw puzzles
[Noroozi and Favaro, 2016b], relative patch location predic-
tion [Doersch et al., 2015] and colorization [Zhang et al.,
2016]. However, these pretext tasks rely on specific transfor-
mations and heuristics and harm the generalization of learned
representations [Chen et al., 2020]. Contrastive learning
[Chen et al., 2020; Grill et al., 2020] currently achieves state-
of-the-art performance in self-supervised learning. Con-
trastive learning aims to learn the feature representation of
samples by bringing the representations of positive pairs
closer, and spreading representations of negative pairs apart.
Wu et al. [Wu et al., 2018] adopts a memory bank to store
the instance class representation vector. Momentum Contrast
(MoCo) [He et al., 2020] trains a visual representation en-
coder by matching an encoded query q to a dictionary of en-
coded keys with contrastive loss. SimCLR [Chen et al., 2020]
uses the normalized temperature-scaled cross-entropy loss as
contrast loss. BYOL [Grill et al., 2020] only relies on positive
pairs rather than negative pairs to learn the feature representa-
tion. SimSiam [Chen and He, 2020] removes the momentum
encoder and designs a simpler one based on BYOL. In this pa-
per, we use the state-of-the-art SimSiam to extract semantic
information of samples for simplicity and flexibility, which is
more resilient to few-shot classification.

Some researchers are devoted to using self-supervision to
squeeze out generalizable features and structural information
from low data regimes. [Gidaris et al., 2019] proposes a
multi-task method combining self-supervised pretext as an
auxiliary loss with the main few-shot loss. [Su et al., 2020]
uses self-supervised learning as a regularizer and uses im-
portance weights to select data for self-supervision. SLA
[Lee et al., 2020] treats the pretext task as augmented labels
and avoids the optimization of the weighted summation loss
between supervised and self-supervised tasks. These meth-
ods directly apply self-supervision as an auxiliary task to the
main few-shot task. However, due to limited samples, unde-
sirable shortcuts might be learned by self-supervision, which
inevitably hurts the learning of key semantic information.

Different from the previous work, we use different feature
representations for different tasks. Firstly, a supervised repre-
sentation is trained by the few-shot classification task. Then,
we use the supervised representation as a teacher to guide the
self-supervision to avoid exploiting shortcuts to solve self-
supervised tasks. Finally, we learn a reinforced representation
from the above representations with a novel fusing distillation
method (FD). In that case, our method can benefit from these
different paradigms respectively and learn a better semantic
representation.

3 Method
3.1 Preliminary
Few-shot learning uses the episode training process and each
episode samples a task. The meta train dataset and test dataset
are represented by Dtr = {Ti}Ii=1 and Dte = {T ∗i }

I∗

i=1 re-

spectively, where T denotes the task. Each task instance con-
tains a support set and a query set. The goal of each task is to
estimate the class of samples in the query set with support set.
For the meta train dataset Dtr = {Ti}Ii=1 = {Si, Qi}Ii=1, the
support set Si is composed of N×K samples that N classes
are randomly selected from all classes of Dtr and K samples
are extracted for each class. The query set Qi is composed
of N×M samples that M samples for each class are un-
seen in Si. The model is trained by randomly selecting tasks
from the task set {Ti}Ii=1. Similar to Dtr, the test dataset
Dte = {T ∗i }

I∗

i=1 is considered as a task set, from which a new
task T ∗i = {S∗i , Q∗i } is sampled and the classes of S∗i and Q∗i
are from Dte but unseen in Dtr.

3.2 Methodology
As illustrated in Figure 1, the proposed CSS uses a 3-stage
training pipeline. Firstly, in the pre-training stage, CSS learns
an initial feature extractor fθ (·) through the original super-
vised learning method. In the next self-supervised training
stage, CSS uses the learned fθ as a prior condition to op-
timize the learning of self-supervision model gξ (·). In the
final meta-training stage, CSS distills the knowledge of fθ (·)
and gξ (·) learned in the first two stages into the final fea-
ture embedding network hϕ (·) through a novel fusion distil-
lation method. It is worth noting that in all the three training
stages, only Dtr is needed, without introducing any auxiliary
datasets. In the remaining part of the section, we will describe
these training stages in detail.

3.3 The Pre-Training Stage
In the pre-training stage as shown in Figure 1(a), feature ex-
tractor fθ (·) is learned with original few-shot classification
tasks. For N -way K-shot problem, in each training episode,
a few-shot task Ti = {Si, Qi} is sampled. Given the feature
extractor fθ (·), the prototype for each class k can be com-
puted as

ck =
1∣∣Ski ∣∣

∑
(xt,yt)∈Sk

i

fθ(xt), (1)

where
∣∣Ski ∣∣ denotes the number of support samples of the k-

th class. Then, given a new sample xq from Qi, the classifier
outputs the normalized classification score for each class k

pθ,ω (y = k |xq, Si ) =
exp (simω (fθ (xq) , ck))∑
k′ exp (simω (fθ (xq) , ck′))

,

(2)
where simω (·, ·) is a similarity function parameterized by ω.
In CSS, we consider the following similarity function:

simω (A,B) = λ cos (Fω (A) , Fω (B)) , (3)
where Fω (·) is a single layer neural network parameterized
by ω and λ is the inverse temperature parameter. Then CSS
can update θ and ω according to the following classification
loss:

Lpre (θ, ω) = E
(xq,yq)∈Qi

[− log pθ,ω (y = yq |xq, Si )] . (4)
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3.4 The Self-Supervised Training Stage
The core idea of the self-supervised training stage is to lever-
age the knowledge learned from the supervised pre-training
stage to reduce representation bias and improve the learning
of self-supervised tasks. For the above consideration, we pro-
pose the conditional self-supervision model, which consists
of a self-supervised module and a conditional module. More
details are illustrated in Figure 1(b).

In this stage, CSS trains the conditional self-supervision
model by using all the data (removing labels) in Dtr without
auxiliary unlabeled data. CSS trains a self-supervised fea-
ture extractor from scratch, rather than fine-tuning the fea-
ture extractor trained in the pre-training stage, which enables
self-supervision to learn a diverse feature representation for
few-shot learning.

Self-supervised module. We consider SimSiam [Chen and
He, 2020] as a self-supervised task for simplicity and flexi-
bility, other self-supervised methods are equally acceptable.
Given a input image x, two augmented views x1 and x2 are
generated according to random augment methods. The two
views are processed by an encoder network consisting of the
self-supervised feature extractor gξ (·) and a projection MLP
head σ. A prediction MLP head, denoted as δ, encode the
output of one view and matches it to the other view. Rep-
resenting the two output vectors as p1 , δ (σ (gξ (x1))) and
z2 , σ (gξ (x2)), the negative cosine similarity of two em-
bedding vectors is obtained:

D (p1, z2) = −
p1
‖p1‖2

· z2
‖z2‖2

, (5)

where ‖·‖2 is l2-norm. Besides, a stop-gradient [Grill et al.,
2020] operation is implemented on z2. Similarly, switching
these two views and obtaining the distance between the two
vectors, the symmetrized loss can be defined as:

Lself (x) = D (p1, z2) +D (p2, z1) . (6)

Conditional module. CSS takes the features learned in the
pre-training stage as a prior condition to optimize the feature
manifold learned in the self-supervised module. CSS mini-
mizes the negative cosine similarity between fθ(x) and gξ(x)
as the condition of self-supervised training:

Lcond(x) = −
fθ (x)

‖fθ (x)‖2
· gξ (x)

‖gξ (x)‖2
. (7)

Then, the final loss function combining condition loss with
self-supervised loss can be obtained by:

Lcss (x) = E
x∈Dtr

[Lself (x) + γLcond(x)], (8)

where γ is a positive constant trading off the importance of
the self-supervised and the conditional terms of the loss.

3.5 The Meta-Training Stage
In the meta-training stage, shown in Figure 1(c), CSS dis-
tills the knowledge learned in the first two stages with a
novel fusion distillation (FD) to improve the quality of the
representation. Specifically, the knowledge extracted from

fθ (·) and gξ (·) is adopted to augment the representations of
samples with graph convolution network (GCN) [Kipf and
Welling, 2017]. In particular, for the sample xi, CSS first
calculates its two corresponding embedding vectors fθ (xi)
and gξ (xi), and then uses an augmentation operation zi =
C (fθ (xi) , gξ (xi)) (e.g. concatenation) to connect them. By
calculating zi of different samples, we can obtain the corre-
sponding feature matrix Z = [z1, · · · , zn]T of these samples,
where n is the number of samples. After that, we can calcu-
late the cosine similarity between two samples and generate
a graph S, where each vertex represents feature of a sample

Si,j =


Zi,:Z

T
j,:

‖Zi,:‖2‖Zj,:‖2
, i 6= j

0 , i = j

, (9)

where Si,j represents feature similarity between the i-th and
j-th sample. Then CSS normalizes the graph matrix to obtain
an adjacency matrix:

E = D−
1
2SD−

1
2 , (10)

where D is the degree diagonal matrix and Dii =
∑
j Si,j .

Inspired by [Li and Liu, 2020], CSS takes E as the Lapla-
cian matrix in GCN to aggregate information among vertices.
Then for the sample xi, the embedding vector of xi with FD
method can be obtained by

z∗i =
∑n

j=1
(αI + E)

ν
i,j hϕ (xj), (11)

where I is the identity matrix, ν is the number of times for
aggregating feature, α is a trade-off parameter to trade off the
representation of neighbors and itself one. (αI + E)

ν
i,j is the

j-th element of the i-th row of (αI + E)
ν .

After that, for a support set Si and a query sample xq , the
classification score for class k can be obtained:

p∗ϕ,ω (y = k |xq, Si ) =
exp

(
simω

(
z∗q ,Ck

))∑
k′ exp

(
simω

(
z∗q ,Ck′

)) , (12)

where
Ck =

1∣∣Ski ∣∣
∑

(xt,yt)∈Sk
i

z∗t (13)

is the prototype of class k. Besides, the classification score
for class k without FD can also be caculated:

pϕ,ω (y = k |xq, Si ) =
exp (simω (hϕ (xq) ,Ck))∑
k′ exp (simω (hϕ (xq) ,Ck′))

,

(14)
where

Ck =
1∣∣Ski ∣∣

∑
(xt,yt)∈Sk

i

hϕ (xt). (15)

Then the final loss is given by:

Lmeta (ϕ, ω) = E
(xq,yq)∈Qi

[− log p∗ϕ,ω (y = yq |xq, Si )

− η log pϕ,ω (y = yq |xq, Si )]
(16)
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where η is a positive constant trading off the importance of
the first and the second terms of the loss.

When predicting, CSS uses hϕ as the feature extractor to
extract the features of samples. Then CSS calculates the aver-
age feature of the support set samples corresponding to each
class as a prototype of the class. Then the similarity between
the query sample and the prototype of each class is calculated
by the similarity function simω (·, ·). Finally, the class with
the highest similarity score is obtained as the classification
result.

4 Experiments
In this section, the effectiveness of CSS is verified by various
experiments. Three standard few-shot classification datasets
(CIFAR-FS [Bertinetto et al., 2019], CUB-200 [Wah et al.,
2011], mini-ImageNet [Vinyals et al., 2016]) are selected to
compare the performance of our approach with previous few-
shot learning methods. All the computations are performed
on a GPU server with NVIDIA TITAN RTX, Intel Core i7-
8700 CPU 3.20GHz processor and 32 GB memory.

4.1 Implementation Details
For the fair comparison, we implement all methods by Py-
Torch. Since [Chen et al., 2019b] shows that the gap among
different methods drastically reduces as the backbone gets
deeper, all algorithms use the Conv-4-64 [Vinyals et al.,
2016] as the backbone and the feature embedding dimen-
sion is set to 1600. In CSS, fθ, gξ and hϕ are implement
by the Conv-4-64 backbone, and the output dimension of Fω
is 2048. The projection MLP head σ is a composite func-
tion, which is composed of Fω and a multi-layer neural net-
work with {1600, 2048, 2048} units and batch normalization
in each layer. The prediction MLP head δ is parameterized
by a three-layer neural network with 512 hidden units and
batch normalization in the hidden layer. All hidden layers use
ReLU function [Glorot et al., 2011] as the activation function.

4.2 Comparison with Prior Work
In order to verify the effectiveness of CSS, several competi-
tive and state-of-the-art fully supervised few-shot classifica-
tion methods are compared, including Baseline [Chen et al.,
2019b], Baseline++ [Chen et al., 2019b], MAML [Finn et
al., 2017], Matching networks [Vinyals et al., 2016], Pro-
totypical networks [Snell et al., 2017], Relation networks
[Sung et al., 2018], FEAT [Ye et al., 2020] and Deep Kernel
Transfer (DKT) [Patacchiola et al., 2020]. Besides, we also
compare the performance of CSS with several state-of-the-
art self-supervision-based few-shot learning methods. Proto-
Transfer [Medina et al., 2020] pre-trains a representation on
self-supervision and adapts it to original few-shot classifica-
tion tasks. CC+rot, PN+rot, SLA and ProtoNet+rot [Gidaris
et al., 2019; Lee et al., 2020; Su et al., 2020] are multi-task
few-shot learning and its varient methods.

We perform experiments to illustrate the average classifi-
cation accuracies over 600 test episodes with 95% confidence
intervals of different methods on CIFAR-FS, CUB-200 and
mini-ImageNet datasets under 5-way 5-shot and 1-shot set-
tings respectively. For each setting, the best result is high-
lighted in bold. CSS (pre-training), CSS(SSL-training) and

Mehods 5-shot 1-shot
Baseline [Chen et al., 2019b] 68.43±0.73 47.01±0.78
Baseline++ [Chen et al., 2019b] 72.85±0.72 51.55±0.80
ProtoNet. [Snell et al., 2017] 68.78±0.77 43.65±0.86
MatchingNet. [Vinyals et al., 2016] 68.93±0.74 51.32±0.85
RelationNet. [Sung et al., 2018] 65.01±0.79 46.76±0.86
MAML [Finn et al., 2017] 70.30±0.77 52.42±0.91
FEAT [Ye et al., 2020] 69.39±0.77 50.69±0.86
DKT [Patacchiola et al., 2020] 67.81±0.73 50.94±0.85
ProtoTransfer [Medina et al., 2020] 67.95±0.76 42.46±0.77
CC+rot [Gidaris et al., 2019] 69.75±0.76 52.02±0.87
PN+rot [Gidaris et al., 2019] 70.52±0.72 48.53±0.88
SLA [Lee et al., 2020] 68.62±0.75 45.94±0.87
ProtoNet+rot [Su et al., 2020] 69.46±0.75 46.81±0.87
CSS(pre-training) 70.64±0.72 51.07±0.89
CSS(SSL-training) 69.96±0.76 51.48±0.89
CSS(meta-training) 74.59±0.72 56.49±0.93

Table 1: Comparison with prior work on CIFAR-FS. Average 5-way
accuracies (%) with 95% confidence intervals (600 episodes).

Mehods 5-shot 1-shot
Baseline [Chen et al., 2019b] 68.30±0.68 46.09±0.70
Baseline++ [Chen et al., 2019b] 79.21±0.64 60.34±0.90
ProtoNet. [Snell et al., 2017] 74.68±0.70 51.47±0.88
MatchingNet. [Vinyals et al., 2016] 74.88±0.66 60.08±0.89
RelationNet. [Sung et al., 2018] 77.45±0.64 62.14±0.94
MAML [Finn et al., 2017] 76.71±0.69 61.73±0.95
FEAT [Ye et al., 2020] 80.73±0.60 64.82±0.90
DKT [Patacchiola et al., 2020] 74.57±0.68 53.56±0.91
ProtoTransfer [Medina et al., 2020] 75.14±0.66 33.28±0.58
CC+rot [Gidaris et al., 2019] 75.89±0.71 61.65±0.91
PN+rot [Gidaris et al., 2019] 76.43±0.71 49.06±0.86
SLA [Lee et al., 2020] 71.30±0.72 48.43±0.82
ProtoNet+rot [Su et al., 2020] 75.18±0.66 47.37±0.83
CSS(pre-training) 77.96±0.65 58.09±0.89
CSS(SSL-training) 77.07±0.70 57.21±0.85
CSS(meta-training) 81.84±0.59 66.01±0.90

Table 2: Comparison with prior work on CUB-200. Average 5-way
accuracies (%) with 95% confidence intervals (600 episodes).

CSS(meta-training) compose the 3-stage training pipeline
proposed by us, which represent the classification model of
CSS using fθ, gξ and hϕ as feature extractors respectively.

From Tables 1, 2 and 3, we can find that in most of
the few-shot classification settings, CSS already achieves al-
most the same performance as state-of-the-art methods only
through the pre-training stage and self-supervised training
stage, while the meta-learning stage can further improve the
accuracy of our model. In all cases, after the meta-training
finishes, we achieve state-of-the-art results surpassing pre-
vious methods with a significant margin. For instance, on
CIFAR-FS, CUB-200, and mini-ImageNet datasets, CSS has
around 6%, 7% and 4% performance improvements com-
pared with the vanilla prototypical networks under the 5-shot
setting, while it has 13%, 15% and 6% performance improve-
ments under the 1-shot setting. At the same time, in all set-
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Mehods 5-shot 1-shot
Baseline [Chen et al., 2019b] 60.78±0.67 39.96±0.69
Baseline++ [Chen et al., 2019b] 67.07±0.66 47.89±0.73
ProtoNet. [Snell et al., 2017] 64.69±0.69 44.42±0.75
MatchingNet. [Vinyals et al., 2016] 62.75±0.75 47.06±0.73
RelationNet. [Sung et al., 2018] 63.96±0.69 48.11±0.82
MAML [Finn et al., 2017] 63.37±0.70 47.44±0.80
FEAT [Ye et al., 2020] 67.07±0.71 47.44±0.72
DKT [Patacchiola et al., 2020] 62.43±0.72 46.89±0.74
ProtoTransfer [Medina et al., 2020] 63.47±0.68 38.20±0.73
CC+rot [Gidaris et al., 2019] 64.71±0.68 48.19±0.77
PN+rot [Gidaris et al., 2019] 64.66±0.68 47.46±0.79
SLA [Lee et al., 2020] 63.32±0.68 44.95±0.79
ProtoNet+rot [Su et al., 2020] 64.77±0.69 45.78±0.77
CSS(pre-training) 65.01±0.73 48.31±0.78
CSS(SSL-training) 65.25±0.69 48.03±0.84
CSS(meta-training) 68.08±0.73 50.85±0.84

Table 3: Comparison with prior work on mini-ImageNet. Average
5-way accuracies (%) with 95% confidence intervals (600 episodes).

Figure 2: Classification results in different cases (5-way 5-shot).

tings, our approach outperforms around 2% to 5% higher than
all previous leading methods.

4.3 Ablation Study
Now we explore the importance of the condition module in
self-supervised learning and the effects of different stages.
We design five cases respectively to investigate the perfor-
mance when applying different combinations of stages. Then,
we test the performance of these methods in the standard few-
shot classification settings. To be brief, we use S1, S2 and
S3 to represent CSS(pre-training), CSS(SSL-training) and
CSS(meta-training) respectively.

• SSL: Discard S1 and S3 and replace S2 with a vanilla
self-supervised learning without a conditional module.
• SL+SSL+FD: Change S2 and abandon the conditional

module in our self-supervised learning method.
• SL (S1): Only execute supervised learning, i.e., using fθ

in CSS as the feature extractor for classification.
• CSS (S1+S2): execute the first two stages without S3,

i.e., using gξ in CSS as the feature extractor.
• CSS (S1+S2+S3): Execute the whole three stages of

CSS, using hϕ as the feature extractor for classification.

Figure 3: Classification results in different cases (5-way 1-shot).

The classification performance in different cases are shown
in Figures 2 and 3. From Figures 2 and 3, we find that the per-
formance of vanilla self-supervised learning (SSL) degrades
significantly compared with other settings, which proves it
difficult to study an effective representation in the absence
of supervised learning with limited samples. The combina-
tion of supervised learning, self-supervised learning and fu-
sion distillation (SL+SSL+FD) can improve the classification
accuracy compared with SSL. However, the performance of
SL+SSL+FD almost can not surpass the supervised learning
model (SL) and the negative impact of SSL with limited sam-
ples still continues. In addition, by comparing the results
of CSS(S1+S2) with SSL and SL, we find that the condi-
tional module can significantly improve the performance of
self-supervised learning, which can achieve comparable re-
sults with the supervised model (SL). Furthermore, CSS with
entire process can achieve an obvious performance improve-
ment and surpass other cases with large margin. The experi-
ments illustrate that the condition module plays a crucial role
in self-supervision and the effective feature fusion can further
improve the model performance.

5 Conclusion
In this work, we propose conditional self-supervised learn-
ing (CSS) with a 3-stage training pipeline: the supervised
pre-training stage, the self-supervised training stage and the
meta-training stage, and each training stage is conducive to
the improvements of the model performance. For the self-
supervised training stage, CSS leverages the supervised infor-
mation learned by the pre-training stage to guide the learning
of self-supervision, thus more resilient to low data regimes.
For the meta-train stage, CSS utilizes a novel fusion distilla-
tion (FD) to integrate the information from the first two stages
into a unified distribution so as to enrich and broaden the orig-
inal representation. Detailed experiments reveal that our ap-
proach indeed leads to significant performance improvements
over recent approaches and achieves state-of-the-art results.
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